equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.



 [  /  IFF ]   G* =   /  G  /     .  /




 [  /  IFF ]   G* =   /  G  /     .  /



 G  = [DR] =            .+


 G  = [DR] =            .+


  G* =  = [          ] ω   / T] / c [    [x,t] ]  = 


G* =  = [          ] ω   / T] / c [    [x,t] ]  = 


Equação de movimento

Após se calcular todas as variações acima, pode-se inferir delas a equação de movimento para campos métricos para, obtendo-se,

que é a equação de campo de Einstein e

foi escolhida porque para limites não relativísticos ela respeita a lei da gravitação universal, onde G é a constante gravitacional.





Um sistema de mecânica quântica é um sistema no qual o comportamento de suas partículas pode ser explicado através da matemática incorporando a quatro princípios:

  1. quantização da energia; onde a troca de energia ocorre em pacotes de energia discreta e a transferência não é contínua, como descrito por Max Planck.
  2. dualidade matéria-energia, que primeiro foi considerada por James Maxwell que a luz é uma onda eletromagnética e, descoberto por Einstein, a natureza da partícula da luz. Doravante, a luz é considerada como tendo natureza dual.
  3. princípio da incerteza que estabelece um limite na precisão com que certos pares de propriedades de uma dada partícula física. Como Werner Heisenberg afirmou, em escalas microscópicas, a natureza em si não permite as medidas de posição e momento das partículas simultaneamente.
  4. Finalmente, o princípio da correspondência onde todas as grandezas do do mundo quântico (usualmente microscópico) tem sua correspondência no mundo clássico. Como colocado por Niels Bohr: A física clássica e física quântica dão as mesmas respostas quando o sistema se torna grande[1].

Definição matemática

Muito da compreensão da mecânica quântica pode ser obtida a partir da compreensão das soluções de forma fechada para a equação de Schrödinger não relativista dependente do tempo em um espaço de configuração apropriada. Em coordenadas cartesianas vetoriais , a equação assume a forma:

equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

em que  é a função de onda do sistema, H é o operador hamiltoniano e T e V são os operadores da energia cinética e energia potencial, respectivamente. (Formas comuns desses operadores aparecem nos colchetes.) A quantidade t é o tempo. Os estados estacionários dessa equação são encontrados resolvendo-se a função de autovalores e autovetores (independente do tempo) da equação de Schrödinger,

equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

ou qualquer formulação equivalente desta equação em um sistema de coordenadas diferente das coordenadas cartesianas. Por exemplo, sistemas com simetria esférica são simplificados quando expressos com coordenadas esféricas. Muitas vezes, apenas soluções numéricas para a equação de Schrödinger podem ser encontradas para um determinado sistema físico e sua energia potencial associada. Existe um subconjunto de sistemas físicos para os quais a forma das funções de autofunções e suas energias associadas podem ser encontradas.

Esses sistemas mecânicos quânticos com soluções analíticas estão listados abaixo.




O modelo spherium consiste de dois elétrons presos na superfície de uma esfera de raio . Ele tem sido usado por Berry e colaboradores[1] para entender tantos sistemas fracamente e fortemente correlacionados e sugeri uma versão "alternativa" para a regra de Hund. Seidl estuda esse sistema no contexto da teoria do funcional da densidade (DFT) para desenvolver a nova funcionais correlaçõe dentro da conexão adiabática.[2]

Definição e solução

Hamiltoniano eletrônico em unidades atômicas, é

equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

onde  é a distância intereletrônica. Para os estados singletos, pode ser mostrado[3] que a função de onda  satisfaz a equação de Schrödinger

equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

Introduzindo a variável adimensional , isso se torna uma função de Heun com pontos singulares em . Com base nas conhecidas soluções de Heun, buscamos funções de onda da forma

equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

e substituição na equação anterior produz arelação de recorrência

equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

com os valores iniciais . Assim, a condição de cúspide Kato é

equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

.

A função de onda reduz para o polinomial

equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

(onde  o número de raízes entre  e ) se, e somente se, . Assim, a energia  é uma raiz da equação polinomial  (onde ) e o raio correspondente  é encontrado a partir da equação anterior, o que gera

equação Graceli dimensional relativista  tensorial quântica de campos 


[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

 é a exata função de onda do -esimo estado excitado da simetria singleto S para o raio .

Sabemos que a partir do trabalho de Loos e Gill que a energia HF do menor estado singleto S . Segue-se que a exata correlação energia para  é  que é muito maior do que a limitação da correlação das energias do íons como hélio () ou os átomos de Hooke (). Isso confirma a visão de que a correlação de elétron na superfície de uma esfera é qualitativamente diferente do que em três dimensões de espaço físico.

Comentários

Postagens mais visitadas deste blog