equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
Na mecânica quântica, o potencial delta é um poço de potencial matematicamente descrito pela função delta de Dirac - uma função generalizada. Qualitativamente, corresponde a um potencial[nt 1] que é zero em todos os lugares, exceto em um único ponto, onde leva um valor infinito[2].
Potencial delta único
A equação de Schrödinger independente do tempo para a função de onda ψ(x) de uma partícula em uma dimensão em um potencial V(x) é
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
onde ħ é a constante reduzida de Planck e E é a energia da partícula.
O potencial delta é o potencial
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
onde δ(x) é a função delta de Dirac.
É chamado um potencial de poço delta se λ é negativo e um potencial de barreira delta se λ é positivo. O delta foi definido para surgir na origem por simplicidade; uma mudança no argumento da função delta não altera nenhum dos resultados procedentes[3].
Calculando a função de onda
Para calcular a função de onda que satisfaz a equação de Schrödinger independente do tempo, primeiro substituímos V(x) = λδ(x), ficando com:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Para x ≠ 0:
Da própria definição da função delta de Dirac, sabemos que V(x) = 0 para todo x ≠ 0. Assim, nesse intervalo, a equação de Schrodinger que governa essa região, será a seguinte:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Cujas soluções já são conhecidas de outros exemplos mais simples (equação de onda para a partícula livre), que são:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
onde
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Entretanto, essa combinação linear tem de satisfazer condições de contorno. A função de onda não pode ir a infinito em nenhuma direção. Então, escolhemos a solução para ser a solução para e para ser a solução para . Assim, a função de onda não tende ao infinito em nenhuma direção do espaço. Outra condição de contorno, será que a função de onda deve ser uma função contínua, desta forma, obteremos que e então, a equação de onda será dada por:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Para obter a constante de normalização, precisamos integrar o módulo ao quadrado da função de onda por todo de espaço, e exigir que este seja igual a 1 (ou seja, como o módulo quadrado da função de onda nos dá a função densidade de probabilidade de encontrar a partícula, integra-la por todo o espaço tem de nos dar 100% de chance da partícula estar em algum lugar do espaço).
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Logo, como
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Assim, usando propriedades das exponenciais e das integrais e calculando-as:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Então, a constante de normalização
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Assim, obtemos a função de onda normalizada:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Nível de energia
Para obter o nível de energia, devemos utilizar a equação de Schrödinger com o potencial delta:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
E então, integrar essa equação sobre o intervalo , da seguinte forma:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Utilizando-se do fato da integração ser um operador linear, podemos separar o lado esquerdo em duas integrais:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Então, sendo constante, tiramos da integração, e, como a função de onda é bem comportada, podemos integrar a derivação, e, utilizando a propriedade de filtragem da delta de dirac na segunda integral, teremos:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Derivando a função de onda, se tem:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Fazendo , o lado direito da equação tenderá a zero, pois o intervalo de integração tenderá a zero. A derivada da função de onda:
Assim, como :
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Como e isolando a energia, obteremos o nível de energia:
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Em física matemática, um potencial de Pöschl-Teller, em homenagem aos físicos Herta Pöschl e Edward Teller, é uma classe especial de potenciais para os quais a equação de Schrödinger unidimensional pode ser resolvida em termos de funções especiais.
Definição
Na sua forma simétrica sua definição é explicitamente dada por[1]
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
e as soluções da equação de Schrödinger independente do tempo
com este potencial pode ser encontrado em virtude da substituição , que produz
- .
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Assim as soluções (são apenas as funções de Legendre com , e , .[2][3] Além disso, os autovalores e os dados de espalhamento podem ser explicitamente computados[4]
No caso especial do inteiro , o potencial é sem reflexão e tais potenciais também surgem como as soluções de sóliton N da equação de Korteweg-de Vries.[5][6]
A forma mais geral do potencial é dada por[1]
O pêndulo quântico é fundamental para entender as rotações internas impedidas na química, as características quânticas dos átomos de dispersão, bem como numerosos outros fenômenos quânticos.[1] Embora um pêndulo não sujeito à aproximação de pequeno ângulo tenha uma não-linearidade inerente, a equação de Schrödinger para o sistema quantizado pode ser resolvida de forma relativamente fácil.[2][3][4]
Equação de Schrödinger
Usando a teoria lagrangiana da mecânica clássica, pode-se desenvolver um hamiltoniano para o sistema. Um pêndulo simples tem uma coordenada generalizada (o deslocamento angular ) e duas restrições (o comprimento da corda e o plano de movimento). As energias cinéticas e potenciais do sistema podem ser encontradas em
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
Isso resulta no Hamiltoniano
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
A equação de Schrödinger dependente do tempo para o sistema é
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
É preciso resolver a equação de Schrödinger independente do tempo para encontrar os níveis de energia e os auto-estados correspondentes. Isso é efetuado melhor alterando a variável independente da seguinte maneira:
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
Esta é a equação de Mathieu.[5]
equação Graceli dimensional relativista tensorial quântica de campos
[ / IFF ] G* = / G / .= /
[DR] = .= + =
G+ G* = = [ ] ω , , / T] / c [ [x,t] ] =
//////
onde as soluções são as funções Mathieu.[6][7][8]
equação Graceli dimensional relativista tensorial quântica de campos [ / IFF ] G* = / G / .= / [DR] = .= + = G+ G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Comentários
Postar um comentário